Simulink® Test™

Getting Started Guide

<

MATLAB&SIMULINK

R2015a <} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Test™ Getting Started Guide
© COPYRIGHT 2015 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used

or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

Revision History
March 2015 Online Only New for Version 1.0 (Release 2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Product Overview

Simulink Test Product Description 1-2
Key Features i, 1-2
Introduction

Refine, Test, and Debug a Subsystem 2-2
Model and Requirements 2-2
Create a Harness for the Controller 2-4
Inspect and Refine the Controller 2-6

Add a Test Case and Test the Controller 2-7
Debug the Controller 2-8
Test Downshift Points of a Transmission Controller 2-11
Test Objectives and Model 2-11

The Test Sequencecu ... 2-12

Add Test Assessments for Controller 2-13
Test the Controller 2-15
Test Model Output Against a Baseline 2-17
Create the Test Case 2-17

Run the Test Case and View Results 2-18
Functional Testing in Verification 2-21
Introduction to the Test Manager 2-22
Test Manager Description 2-22

Test Creation and Hierarchy 2-22
Test Results 2-23

iii

iv

Contents

Share Results

Product Overview

1

Product Overview

Simulink Test Product Description

Develop, manage, and execute simulation-based tests

Simulink® Test™ provides tools for authoring, managing, and executing systematic,
simulation-based tests. You can create nonintrusive test harnesses to test models and
subsystems. Simulink Test includes a test sequence block that lets you construct complex
test sequences and assessments, and a test manager that lets you manage and execute
tests. It enables functional, baseline, equivalence, and back-to-back testing, including
software-in-the-loop (SIL) and processor-in-the-loop (PIL). You can generate reports,
archive and review test results, rerun failed tests, and debug the component or system
under test.

The test harness in Simulink Test lets you test components without creating a separate
test model. You can apply pass and fail criteria that include absolute and relative
tolerances, limits, logical checks, and temporal conditions. Test execution can be
automated or customized with setup and cleanup scripts. Simulink Test stores test cases
and their results, creating a repository for reviewing and investigating failures. You can

link requirements to a test case captured in Microsoft” Word, IBM® Rational® DOORS®,
and other documents (with Simulink Verification and Validation™).

Key Features

* Test harness for subsystem or model testing

+ Test sequence block for running tests and assessments

+ Pass-fail criteria, including tolerances, limits, and temporal conditions

+ Baseline, equivalence, and back-to-back testing

* Setup and cleanup scripts for customizing test execution

+ Test manager for authoring, executing, and organizing test cases and their results

* Automatic report generation to document test outcomes

Introduction

* “Refine, Test, and Debug a Subsystem” on page 2-2

* “Test Downshift Points of a Transmission Controller” on page 2-11
* “Test Model Output Against a Baseline” on page 2-17

* “Functional Testing in Verification” on page 2-21

* “Introduction to the Test Manager” on page 2-22

2

Introduction

Refine, Test, and Debug a Subsystem

2-2

In this section...

“Model and Requirements” on page 2-2

“Create a Harness for the Controller” on page 2-4
“Inspect and Refine the Controller” on page 2-6

“Add a Test Case and Test the Controller” on page 2-7
“Debug the Controller” on page 2-8

Test harnesses provide a development and testing environment that leaves the main

model design intact. You can test a functional unit of your model in isolation without

altering the main model. This example demonstrates refining and testing a controller
subsystem using a test harness. The main model is a controller-plant model of an air

conditioning/heat pump unit. The controller must operate according to several simple
requirements.

Model and Requirements
1 Access the model. At the MATLAB command prompt, enter

cd(fullfile(matlabroot, "help®, "toolbox", "sltest”, "examples®));

2 Copy this model file and supporting files to a writable location on the MATLAB path:

sltestHeatpumpExample.slx
sltestHeatpumpBusPostLoadFcn.mat
PumpDirection.m

3 Open the model.

open_system("sltestHeatpumpExample™)

Refine, Test, and Debug a Subsystem

delay delay
- delay =
Time delay sec Write1
DeltaT _fan [Z)—> DeltaT _fan
DT_fa
DEM fan temp —fan Write2
DeltaT_pumg DeltaT _pump
DT _pum
DS pump temp -pume Write3
(E_.. Tt e »{ control_in
In1
control_out e Tmom
— Troom_in Tuutside
In2
Controller Flant
Zern-O rder
Hold

Copyright 19902014 The M athWars Inc.

In the example model:

* The controller accepts the room temperature and the set temperature inputs.

* The controller output is a bus with signals controlling the fan, heat pump, and the
direction of the heat pump (heat or cool).

* The plant accepts the control bus. The heat pump and the fan signals are Boolean,
and the heat pump direction is specified by +1 for cooling and -1 for heating.

The test covers four temperature conditions. Each condition corresponds to one operating
state with fan, pump, and pump direction signal outputs.

2

Introduction

2-4

Temperature condition System state| Fan Pump Pump
command | command | direction
|Troom - Tset] < DeltaT_fan idle 0
DeltaT_fan <= |Troom fan only 1
- Tset] < DeltaT_pump
|Troom - Tset] < cooling 1 -1
DeltaT _pump and Tset < Troom
|Troom - Tset] < heating 1 1 1

DeltaT_pump and Tset >Troom

Create a Harness for the Controller

1

Right-click the Controller subsystem and select Test Harness > Create Test
Harness (Controller).

Set the harness properties:

Name: devel _harness_1

Sources and Sinks: None and Scope

Initial harness configuration: Refinement/Debugging

Select Open harness after creation.

Refine, Test, and Debug a Subsystem

"L Create Test Harness @

Specify the properties of the test harness. The component under test is the system

for which the harness is being created. After creation, use the block badge to find and
open harnesses.

Component under test: sltestHeatpumpExample/Controller

Properties Description

Basic Properties

Name: devel_harness_1

Sources and Sinks

e] =

Component under Test ll:[)'

Harness Objectives

Initial harness configuration: ’Reﬂnementhebugging ']

Create without compiling the model
Rebuild harness on open

Update Configuration Parameters and Model Workspace data on rebuild

Enable component editing in harness model

Open harness after creation

[OK][Cancel H Help

3 Click OK to create the test harness.

2-5

2 Introduction

devel_harness_1 »

Taet

control_out > >

Troom_in

L0/ [0/ [0

Controller

[taT_ ItaT_fi
DSM fan temp DSW_For_DSM_DeltaT_fan
i
DSM pump temp DSW_For_DSM_DelaT_pump
= @
Time delay sec DSW_For_DSM_delay

Inspect and Refine the Controller

1 Double-click Controller to open the subsystem.

2 Notice that the state chart is disconnected from its ports. Fix this issue by connecting
the chart as shown.

Refine, Test, and Debug a Subsystem

[Padevel_harness_1 b [Pa|Controler -

T meas control_out

Tset fan cmd ‘_1
T req

pump_ dlr

. controller_chart
Troom_in -

3 In the harness, click the save button in the toolbar to save the harness and model.

Add a Test Case and Test the Controller

Navigate to the top level of devel harness_1.

2 Create a test case for the harness with a constant Tset and a time-varying Troom.
Connect a Constant block to the Tset input and set the value to 75.

3 Add a Sine Wave block to the harness model to simulate a temperature signal.
Connect the Sine Wave block to the conversion subsystem input Troom_in.

4 Double-click the Sine Wave block and set the parameters:

Amplitude: 15
+ Bias: 75

Frequency: 2*pi1/3600
* Phase (rad): 0

Sample time: 1

+ Select Interpret vector parameters as 1-D.

2-7

2 Introduction

i

75
» Tset
» Troom_in
r"‘-|.|‘_._I

Controller

%]
d
A

h

¥

control_out

Sine Wave

I

5 In the Configuration Parameters dialog box, in the Data Import/Export pane,
select Input and enter u. U is an existing structure in the MATLAB® base
workspace.

6 In the Solver pane, set Stop time to 3600.
Open the three scopes in the harness model.

8 Simulate the harness.

Debug the Controller

1 Observe the controller output. fan_cmd is 1 during the IDLE condition where |
Troom - Tset] < DeltaT_fan.

This is a bug. fan_cmd should equal 0 at IDLE. The fan_cmd control output must be
changed for IDLE.

2-8

Refine, Test, and Debug a Subsystem

-

-
Tcontrol_out_fan_cmd | = || = || 3 | Tcontml_out_pump_cmd | = || = || 3 | Tcontml_out_pump_dir | = || = || 23 ‘

B+ %% Da i G0« 3| 0%k Pa fE- 80w i ONK P a &8~

-5 -5
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500

-5
0 500 1000 1500 2000 2500 3000 3500

Time offset. 0 Time offset 0 Time offset 0

2 In the harness model, open the Controller subsystem.
Open controller_chart.

4 In the IDLE state, fan_cmd is set to return 1. Change fan_cmd to return O. IDLE is
now:

IDLE

entry:

fan_cmd =
pump_cmd

0;
pump_dir =

0;
0;

5 Simulate the harness model again and observe the outputs.

T(ontrol_out_fan_(md [o =3[=] TCDHtro_out_pump_(md (o= =] Tcontml_out_pump_dir (==][=]

Be@«i R Bak (a0 W(«idSRD0as ~[(Be|/«wsi dSKOD0ak -

-5 -5
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500

-5
0 500 1000 1500 2000 2500 3000 3500

Time offset: 0 Time offset: 0 Time offset 0

6 fan_cmd now meets the requirement to equal O at IDLE.

2 Introduction

Related Examples
. “Test a Model Component Using Signal Functions”

. “Test Downshift Points of a Transmission Controller”

2-10

Test Downshift Points of a Transmission Controller

Test Downshift Points of a Transmission Controller

In this section...
“Test Objectives and Model” on page 2-11

“The Test Sequence” on page 2-12
“Add Test Assessments for Controller” on page 2-13
“Test the Controller” on page 2-15

Test Objectives and Model

This example demonstrates a test sequence and test assessment for a transmission
shift logic controller. The controller should downshift between each of its gear ratios in
response to a ramped throttle application. As the throttle increases, the vehicle speed
is held constant. Based on hypothetical requirements, the controller performance is
assessed in a Test Assessment block.

1 Access the model. At the MATLAB command line, enter

cd(fullfile(matlabroot, "help®, "toolbox", "sltest”, "examples™));

2 Copy the model sltestTestSequenceDownshift.slx to a writable location on the
MATLAB path.

3 Open the model.

open_system("sltestTestSequenceDownshift™);

4 Click the badge on the subsystem shift_controller and open the test harness
controller_harness. shift_controller is connected to a Test Sequence block
and a Test Assessment block.

2-11

2 Introduction

spesed =
1 spesd
gear
3 ttie » >
thiotiie {.r,
Test Sequence shift_controller
] p|gear
1
Floating p{zpeed 2
Smpe 3
P throtte
Test Assessment

The Test Sequence

Double-click the Test Sequence block to open the editor.

2 The test sequence begins by ramping speed to 75 to initialize the controller to fourth
gear. Throttle is then ramped at constant speed until a gear change. Downshifts are
performed to second and first gear. After the change to first gear, the test sequence

stops.

2-12

Test Downshift Points of a Transmission Controller

Step Transition Next Step
Iﬂltlallle_-‘-l_S 1. Speed == 75 down 4 3
throttle = 10; -
speed = O+ramp(25©et);

down_4_3 1. hasChanged(gear) initialize_3 2
throttle = 10+ramp(10*et); T
speed = 73;

initialize_3_2 1. after(4,sec) down 3 2
throttle = 10 S
speed = 45,

down_3_2 1. hasChanged(gear) initialize 2 1
throttle = 10+ramp(10%et); T
speed = 45

initialize 2 1 1. after(4,sec) down 2 1
throttie = 10; -
speed = 15;

down_2_1 1. hasChanged{gear) stop
throttle = 10+ramp(10*et);

speed = 15;

stop
throttle = 0;
speed = 0;

Add Test Assessments for Controller

Assume that the requirements for the shift controller include:

* Speed shall never be negative.

* Gear shall never be negative.

2-13

2 Introduction

2-14

* Throttle shall be between 0% and 100%.

* The controller shall not let the engine overspeed.

Open the Test Assessment block. The first three requirements correspond to these
assertions already in the block. If the controller violates one of the assertions, the
simulation fails.

assert(speed >= 0,"Speed < 07);
assert(throttle >= 0, "Throttle < 07);
assert(throttle <= 100*Throttle > 1007);
assert(gear > 0, "Impossible gear™);

Add additional assessments corresponding to the last requirement that the controller
shall not allow the engine to overspeed. Assume that the engine cannot overspeed in top
(fourth) gear.

1 Add three sub-steps to the AssertConditions step. To add each step, right-click the
AssertConditions step and select Add sub-step.

2 Right-click the AssertConditions step and select When decomposition. This
changes the switching behavior of the sub-steps of AssertConditions. Switching
is based on the signal condition defined in the Step column, with each condition
preceded by the when operator. Because the switching is controlled by when, the
Transition and Next Step columns are grayed out. The last step EIse in the when
decomposition covers any condition not defined above it, and is left blank.

3 Enter the Step conditions as shown.

Sub-steps of AssertConditions

OverSpeed3 when gear ==
assert(speed <= 90, "Engine overspeed In gear 3%)

OverSpeed3 when gear ==
assert(speed <= 50, "Engine overspeed In gear 2%)

OverSpeed3 when gear ==
assert(speed <= 30, "Engine overspeed in gear 1%)

Else

Test Downshift Points of a Transmission Controller

Step Transition Next Step
B AssertConditions

assert
assert
assert
assert

speed == 0,'Speed < 0");
throttle == 0.'Throttle < 0);
throttle <= 100,'Throttle = 100");
gear = 0,'Impossible gear');

PP

OverSpeed3 when gear ==
assert(speed <= 90,'Engine overspeed in gear 3')

OverSpeed2 when gear ==
assert(speed <= 50,'Engine overspeed in gear 2)

OverSpeed1 when gear ==
assert(speed <= 30,'Engine overspeed in gear 1')

Else

Test the Controller

Open the scope.
2 Set the test harness model simulation time to 45 sec.

Simulate the harness. The output shows the progressive throttle ramp at each test
step, and the corresponding downshift.

2-15

2 Introduction

4 The controller passes all of the assessments in the Test Assessment block.

See Also

Blocks
Test Sequence

2-16

Test Model Output Against a Baseline

Test Model Output Against a Baseline

To test the simulation output of a model against a defined baseline data set, use a
baseline test case. In this example, use the sldemo_absbrake model to compare the
simulation output to a baseline that is captured from an earlier state of the model.

Create the Test Case

1 Open the sldemo_absbrake model.
2 To open the test manager from the model, select Analysis > Test Manager.

3 From the test manager toolstrip, click New to create a test file. Name and save the
test file.

The new test file consists of a test suite that contains one baseline test case. They
appear in the Test Browser pane.

4 Right-click the baseline test case in the Test Browser pane, and select Rename.
Rename the test case to Slip Baseline Test.

5 Under System Under Test in the test case, click the Use current model button

i to load the sldemo_absbrake model into the test case.

6 Under Baseline Criteria, click Capture to record a baseline data set from the
model specified under System Under Test.

Save the baseline data set to a location. After you save the baseline MAT-file, the
model runs and the baseline criteria appear in the table.

7 Expand the baseline data set. Set the Absolute Tolerance of the first yout signal
to 15, which corresponds to the Ww signal.

4 |v|test_capture.mat
& yout 15
& yout
& yout
+5lp

o Add.. W Capture.. [Delete

2-17

2 Introduction

2-18

For more information about tolerances and criteria, see .

Run the Test Case and View Results

1

In the sldemo_absbrake model, set the Desired relative slip constant block to
0.22.

In the test manager, select the Slip Baseline Test case in the Test Browser pane.

On the test manager toolstrip, click Run to run the selected test case.

The test manager switches to the Results and Artifacts pane, and the new test
result appears at the top of the table.

Expand the results until you see the baseline criteria result.

The signal yout.Ww passes, but the overall baseline test fails because other signal
comparisons specified in the Baseline Criteria section of the test case were not
satisfied.

To view the yout . Ww signal comparison between the model and the baseline criteria,
expand Baseline Criteria Result and click the option button next to the
yout.Ww signal.

4 =] Baseline Criteria Result
® yout Ww
O yout Vs
! yout.Sd

o 0 0 0 O

) slp
[m Sim Output (sldemo_absbrake :

The Comparison tab opens and shows the criteria comparisons for the yout.Ww
signal.

Test Model Output Against a Baseline

70

80

40

30

20

=== Baseline == Compare To
~_
<
~
e)
—
—
\
] 1 2 3 4 5 [} 7 8] 10 11 12 13 14
= Tolerance = Difference
|
|
/ I
/\ . {
Y f L/
a 1 2 3 & 5 L3 T 8 9 10 1 12 13 14

6 You can also view signal data from the simulation. Expand Sim Output and select

the signals you want to plot.

4[4 Sim Output (sldemao_absbrake -

¥ yout Ww —

v yout Vs —
yout.Sd —
slp

The Visualize tab opens and plots the simulation output.

2-19

2

Introduction

2-20

85

80

&
w
w

For information on how to export results and generate reports from results, see “Export
Test Results and Generate Reports”.

Functional Testing in Verification

Functional Testing in Verification

Model verification seeks to demonstrate that the “design is right,” that is, that the model
meets the design requirements and conforms to standards. Model verification activities
include property proving, model coverage measurement, requirements tracing, and
functional testing.

Functional testing can be used at any stage of model development, at any level of model
hierarchy. An effective approach is to start with lower-level functional units and work

up the model hierarchy to the system level. In functional testing, you simulate the

model with one or more test cases and compare the result to expectations. Each test case
includes inputs to the component under test, expected outputs, and test assessments.
Rigorous functional testing maps each test case to a model requirement. Building up
suites of test cases increases the range of requirements for which the model can be shown
to behave as expected.

Functional testing can be used to:

* Test the model as it is being developed.
* Debug the model after completion.

* Check that the model does not regress.

Common methods of generating test inputs include logging signals from your model,
writing test vectors based on requirements, or generating test cases using Simulink
Design Verifier™. You can define expected outputs using timeseries data and/or model
assessments such as assertions. The goal is to provide a conclusive pass or fail result for
your test.

2-21

2

Introduction

Introduction to the Test Manager

2-22

In this section...

“Test Manager Description” on page 2-22
“Test Creation and Hierarchy” on page 2-22
“Test Results” on page 2-23

“Share Results” on page 2-23

Test Manager Description

The test manager in Simulink Test enables you to automate Simulink model testing and
organize large sets of tests. A model test is performed using test cases where criteria are
specified to determine a pass-fail outcome. The test cases are run from the test manager.
At the end of a test, the test case results are organized and viewed in the test manager.

Test Creation and Hierarchy

Test cases are contained within a hierarchy of test files and test suites in the Test
Browser pane of the test manager. A test file can contain multiple test suites, and test
suites can contain multiple test cases.

Results and Arifacts

4 [=] TestFile
4 Test Suite 1
|| Simulation Test Case
|| Baseline Test Case
4 Test Suite 2

|| Equivalence Test Case

There are three types of test case templates to choose from in the test manager. Each test
case uses a different set of criteria to determine the outcome of a test.

Introduction to the Test Manager

+ Baseline: compares signal outputs of a simulation to a baseline set of signals. The
comparison of the simulation output and the baseline must be within the absolute or
relative tolerances to pass the test, which is defined in the Baseline Criteria section
of the test case.

+ Equivalence: compares signal outputs between two simulations. The comparison of
outputs must be within the absolute or relative tolerances to pass the test, which is
defined in the Equivalence Criteria section of the test case.

+ Simulation: checks that a simulation runs without errors, which includes model
assertions.

Test Results

Results of a test are given using a pass-fail outcome. If all of the criteria defined in a
test case 1s satisfied, then a test passes. If any of the criteria are not satisfied, then the
test fails. Once the test has finished running, the results are viewed in the Results and
Artifacts pane. Each test result has a summary page that highlights the outcome of the
test: passed, failed, or incomplete. The simulation output of a model is also shown in the
results section. Signal data from the simulation output can be visually inspected using
the Simulation Data Inspector.

Share Results

Once you have completed the test execution and analyzed the results, you can share the
test results with others or archive them. If you want to share the results to be viewed
later in the test manager, then you can export the results to a file. To archive the results
in a document, you can generate a report, which can include the test outcome, test
summary, and any criteria used for test comparisons.

2-23

